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Solution of the Riemann problem of classical gasdynamics
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Abstract

The mere structure of the linearly degenerate characteristic field of the equations of gasdynamics provides the

natural frame to build the exact Riemann solver for any gas satisfying the condition evvvðs; vÞ 6¼ 0, which guarantees the

genuine nonlinearity of the acoustic modes. Differently from single equation methods rooted in the c-law ideal gas

assumption, the new approach is based on the system of two nonlinear equations imposing the equality of pressure and

of velocity, assuming as unknowns the two values of the specific volume, or temperature, on the two sides of the contact

discontinuity. Newton iterative method is used. The resulting exact solver is implemented for van der Waals gas, in-

cluding the treatment of nonpolytropic behavior with molecular vibrations at thermal equilibrium, as well as for

Martin–Hou gas, as an example of the general applicability of the proposed approach. The correctness of the new

Riemann solver is demonstrated by comparisons with other numerical techniques.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Riemann problem for the ideal gas does not admit a solution expressible in closed form. This has led

several authors to develop iterative solution schemes to determine the different waves issuing from an initial

discontinuity in the flow field variables. Two methods were first proposed by Godunov, one based on a

fixed-point scheme [1] and the other based on a higher order Newton iteration, with a tangent parabola

instead of a straight line [2]. Chorin [3] improved the first Godunov�s method to circumvent some difficulties

and computational inefficiencies caused by strong rarefaction waves. A rather different approach was
pursued by Smoller [4] leading to a compact implicit equation that can be solved by a secant method.

Among the numerous subsequent works, the paper by Gottlieb and Groth [5] has become the classical

reference in the field in that it presents the most efficient solver and contains an exhaustive comparative

review of several implemented algorithms. Essentially, all these solvers are formulated for an ideal gas with
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a constant specific heat ratio, called also ideal c-law gas, for which the Riemann problem is reduced to a

single equation for the pressure or another unknown. A complete and detailed description of the solution of

the Riemann problem for this kind of gas is given by Godlewski and Raviart [6, Chapter II, Section 3].

These Riemann solvers have been extended to deal with gases endowed with more general thermody-

namic properties, designated commonly as nonideal or real gases. For instance, Letellier and Forestier have

generalized Smoller method to the van der Waals gas [7]. In the particular case of zero attractive inter-

action, indicated as ‘‘covolume gas’’, Pike has proposed an approximated Riemann solver for the efficient

numerical solution of gasdynamic equations [8]. Other similar Riemann solvers for real gases are described
in the monograph of Toro [9]. All these works rely on the hypothesis of a constant specific heat at constant

volume, an assumption often stated by attaching the attribute polytropic to the gas, as will be done

throughout this paper. In the field of solvers for nonpolytropic ideal gases, the pioneering work of Colella

and Glaz [10] must be mentioned. Riemann solvers suitable for simulating the propagation of shock waves

inside compressible liquids have been proposed recently by Ivings et al. [11].

All these Riemann solvers for fluids different from the c-law, i.e., polytropic ideal gas are formulated in

terms of a single equation for the pressure unknown. This is particularly convenient for the purpose of

obtaining an approximate or even an exact Riemann solver to be used eventually in the numerical inte-
gration of the Euler equations by means of a Godunov-type method.

The aim of the present paper is to devise a new approach for solving the Riemann problem associated

with gases endowed with thermodynamic equations of state more general than the c-law ideal gas. It will be

shown that this objective is easily achieved by formulating the Riemann problem in its most natural form:

the equality of the velocity value and of the pressure value across the contact discontinuity. The two-

equation Riemann solver will be developed here specifically for the van der Waals gas with polytropic or

nonpolytropic behavior, adopting as unknowns the two values of the specific volume, or of the tempera-

ture, on each side of the contact discontinuity. For both van der Waals models Hugoniot�s condition
evvvðs; vÞ 6¼ 0, with e; s and v denoting specific energy, entropy and volume, is fulfilled in the single-phase

regions, except under very special situations. As well known, this condition guarantees that the charac-

teristic fields associated with the acoustic eigenvalues are genuinely nonlinear, and therefore identifies gas

behaviour which is usually put under the banner of classical gasdynamics. This property, also referred to as

convexity of the Euler equation system, is lost in a limited region near the saturation curve for vapors with a

conveniently high molecular weight. The loss of genuine nonlinearity results in ‘‘exotic’’ wave structures,

such as rarefaction shock waves, compression fans and composite or mixed waves, which are the hallmark

of the so-called nonclassical gasdynamics [12].
The Riemann solver developed here requires only that condition evvvðs; vÞ 6¼ 0 is satisfied. As a conse-

quence, it is not limited to the van der Waals gas and is applicable also to gases with more general equations

of state, such as Martin–Hou gas model [13], with the restriction of remaining in the realm of classical

gasdynamics and provided that the uniqueness of the solution to the Riemann problem can be assured by

Smith�s strong condition evðP ; vÞ > 0 [14].

The paper is structured as follows. Section 2 describes the mathematical properties of the Euler equa-

tions written for the variables, specific volume, velocity, and specific entropy. We define the concept of

linear degeneracy and describe the necessary condition for genuine nonlinearity of the acoustic wave fields,
introducing also the fundamental derivative of gasdynamics. The section ends with a brief account of the

possibility for the polytropic van der Waals gas of manifesting a nonclassical behavior. In Section 3, a

detailed description of the proposed Riemann solver is given, arranged in the following four steps: (i) the

formulation of the Riemann problem as a system of two equations for the two specific volumes at either

side of the contact discontinuity, as well as the description of the associated Newton iterative method of

solution; (ii) the solution of the rarefaction wave; (iii) the solution of the shock wave; (iv) the tests per-

formed in order to check the correctness of the proposed algorithm. Section 4 is a simple replica of the same

four steps for the nonpolytropic case where a different parametrization by temperature allows explicit
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expressions of the thermodynamic relations within the solution algorithm. Section 5 contains the appli-

cation to the Martin–Hou gas model. Section 6 is devoted to some concluding remarks. In the appendix, the

thermodynamic definition of polytropic and nonpolytropic van der Waals gas, including the respective

expressions for the speed of sound, is reported.
2. Eigenstructure of Euler equations

Let us consider the Riemann problem for the Euler equations of gasdynamics governing the motion of a

compressible fluid of zero viscosity and zero thermal conductivity. To make the solution of rarefaction

waves most simple, it is convenient to use the specific volume v, the velocity u, and the specific entropy s as
unknowns, see, e.g. [15]. In this representation, the quasilinear form of the hyperbolic system of the Euler

equations in one dimension is

ov
ot þ u ov

ox� v ou
ox ¼ 0;

ou
ot þ u ou

ox þ v oP
ov

� �
s

ov
oxþ v oP

os

� �
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ox ¼ 0;
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ð2:1Þ

where P ¼ P ðs; vÞ represents an equation of state of the fluid. By introducing the definitions
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the nonlinear hyperbolic system can be written compactly

ow

ot
þ AðwÞ ow

ox
¼ 0: ð2:3Þ

The eigenvalues of matrix AðwÞ are, written in increasing order,

k1ðwÞ ¼ u� cðs; vÞ; k2ðwÞ ¼ u; k3ðwÞ ¼ uþ cðs; vÞ; ð2:4Þ

where the speed of sound of the gas

cðs; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2

oPðs; vÞ
ov

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oPðs; qÞ

oq

s
ð2:5Þ

has been introduced, 1 thanks to the inequality oPðs;vÞ
ov ¼ �evvðs; vÞ < 0, which holds by virtue of thermody-

namic stability. The associated right eigenvectors are r1ðwÞ ¼ ðv; cðs; vÞ; 0ÞT, r2ðwÞ ¼ ððoP
osÞv; 0; ðoPovÞsÞ

T
and

r3ðwÞ ¼ ðv;�cðs; vÞ; 0ÞT. The gradients of the eigenvalues are easily evaluated as $k1ðwÞ ¼ ð�ðoc
ovÞs; 1;�ðoc

osÞvÞ
T
,

$k2ðwÞ ¼ ð0; 1; 0ÞT and $k3ðwÞ ¼ ððoc
ovÞs; 1; ðocosÞvÞ

T
, where $ ¼ ðov; ou; osÞ.

It is immediately verified that

r2ðwÞ � $k2ðwÞ ¼ 0 ð2:6Þ

for any w in the domain of definition of the variables v; u and s, so that the intermediate eigenvalue k2 is

linearly degenerate.
1 With a slight notational abuse, the same symbol is used to indicate mathematically different functions which correspond to the same

physical quantity expressed in terms of different variables.
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On the contrary, for the other two eigenvalues a direct calculation gives

r1ðwÞ � $k1ðwÞ ¼ �v
oc
ov

� �
s

þ c;

r3ðwÞ � $k3ðwÞ ¼ v
oc
ov

� �
s

� c:
ð2:7Þ

The genuinely nonlinear character of the eigenvalues k1ðwÞ and k3ðwÞ depends on the vanishing of the

quantity vðoc
ovÞs � c, cf. [16]. The sign of this expression depends on that of the following derivative

o2P ðs; vÞ
ov2

¼ �evvvðs; vÞ; ð2:8Þ

since a direct calculation gives, cf. [6, pp. 44–45],
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The function

Gðs; vÞ � v3

2c2
o2P ðs; vÞ

ov2
¼ 1

c
o½cðs; qÞq


oq
; ð2:10Þ

was introduced by Thompson [17] and is called the fundamental derivative of gasdynamics. The curve of the

plane v–P , where GðP ; vÞ ¼ 0 represents the locus of loss of the genuine nonlinearity for the considered gas.

Note that GðT ; vÞ ¼ GðsðT ; vÞ; vÞ can be expressed in terms of P ðT ; vÞ and cvðT ; vÞ using the general relation

(A.2.5) for the speed of sound cðT ; vÞ and from equation (78) of [15, p. 39] giving ðo2P=ov2Þs.
In the particular case of the polytropic van der Waals gas defined in Section A.1 of the appendix, the

fundamental derivative is easily found to be

GðP ; vÞ � GðsðP ; vÞ; vÞ ¼
ðd þ 1Þðd þ 2Þ Pþa=v2

ðv�bÞ2 �
6a
v4

2ðd þ 1Þ Pþa=v2

vðv�bÞ � 4a
v4

: ð2:11Þ

As shown by Bethe [15], Zel�dovich [18], and Thompson [17], see also Cramer [19] and Argrow [20], for

the polytropic van der Waals gas a finite region of negative G may exist in the vapor phase near the sat-

uration curve, see Fig. 1. The critical point has coordinates vcr ¼ 3b; Pcr ¼ a=ð27b2Þ and the saturation curve

has been determined by Maxwell�s equal area rule.

The locus G ¼ 0, boundary between the classical and nonclassical regimes, is found by setting the nu-
merator of (2.11) to zero and solving for the pressure P to find, cf. [21],

PG¼0ðvÞ ¼
a
v2

6

ðd þ 1Þðd þ 2Þ 1

�"
� b

v

�2

� 1

#
: ð2:12Þ

In the limit d ! 0, i.e., cv ¼ R=d ! 1, and for d small enough there is a locus G ¼ 0 which represents a curve

in the plane v–P . This curve starts in a point on the saturation curve slightly to the right of the critical point.
The curve G ¼ 0 and the saturation curve delimit a finite region of negative G in the vapor phase.

The area of this nonclassical region diminishes as d increases, and for d ¼ dH ¼ 1=16:66 ¼ 0:06 reduces

to a single point on the saturation curve of coordinates ð1:4843 vcr; 0:888 PcrÞ, as given by Thompson and

Lambrakis [22]. For d > dH, no anomalous behavior can be observed in the vapor phase. The nonclassical

region for d ¼ 0:0125 is shown in the same Fig. 1. Note that small values of the parameter d are associated



Fig. 1. Isentropes in the v� P plane for the polytropic van der Waals gas with d ¼ 0:0125 < dH. The ‘‘nonclassical’’ region is located

between the locus G ¼ 0 and the saturation curve.
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with a contribution to the specific heat by a large number of vibrational modes of the molecule, which are

assumed here to be fully activated. In fact, the value of d for a molecule of N:A: atoms and with all its

vibrational modes fully activated is given by

d ¼
1

3N:A:�5
2

for linear molecules;
1

3ðN:A:�1Þ for nonlinear molecules:

(

As a consequence the minimum number of atoms N:A:min required for making the nonclassical region

accessible is N:A:min ¼ 5
6
þ 1

3dH
for linear molecules, and N:A:min ¼ 1þ 1

3dH
for nonlinear molecules. For a

description of the anomalous shock wave phenomena occurring in the nonclassical region, see [23].

In the forthcoming analysis of the Riemann problem, we are excluding states occurring inside the sat-

uration curve and also gases allowing for nonclassical phenomena. In particular, for polytropic van der

Waals gases with d < dH, we suppose that the Riemann problem does not involve states falling inside the

region G < 0.
3. Riemann problem for polytropic van der Waals gas

Let us now define the Riemann problem for the gasdynamic equations, associated with the two states

ðvl; Pl; ulÞ and ðvr; Pr; urÞ, see, e.g. [4,14]. The Riemann problem of gasdynamics amounts to determine the

system of the three waves issuing from the jump in the initial data. The system consists in a rarefaction or

shock wave connecting the left state ðvl; Pl; ulÞ with a state on the left of the second wave which is always a

contact discontinuity, and finally a rarefaction or shock wave connecting the state on the right of the
contact discontinuity with the right state ðvr; Pr; urÞ, as depicted in Fig. 2.

3.1. Equation system for the Riemann problem

The peculiarity of the (intermediate) contact discontinuity is that both the velocity and pressure are

constant across it while the other independent thermodynamic variable suffers a jump. In fact, the integral



Fig. 2. Riemann problem for the Euler equations of gasdynamics.
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curves of the linearly degenerate eigenvalue k2ðwÞ coincide with the Hugoniot loci and are obtained by

solving the ODE system

dw

dn
¼ aðnÞr2ðwÞ; ð3:1Þ

where a is an arbitrary function to fix the normalization. For the hyperbolic system of the Euler equations

considered in Section 2, this system reads

dv
dn ¼ �aðnÞ oP ðs; vÞ

os ;

du
dn ¼ 0;

ds
dn ¼ aðnÞ oPðs; vÞ

ov :

8>>>><
>>>>:

ð3:2Þ

Therefore, the variable u is constant along these curves. Moreover, taking the ratio of the first and the third

equation we see that along the integral curves

dv
ds

¼ � oP ðs; vÞ
os

�
oP ðs; vÞ

ov
: ð3:3Þ

The right-hand side is simply the derivative of the function v ¼ vðsÞ defined implicitly through the relation

P ðs; vÞ ¼ constant. Thus, also the variable P is constant along the integral curves. In conclusion, across the

contact discontinuity u ¼ u
 and P ¼ P 
, with u
 and P 
 denoting the values of the constant velocity and

pressure, as shown in Fig. 2.

Let uðlÞðvÞ and PðlÞðvÞ indicate respectively the velocity and pressure of the one-parameter family of states

which can be connected to the left state ðvl; Pl; ulÞ of the Riemann problem, by either a rarefaction wave or a
shock wave, depending on the value of v with respect to vl. Similarly, let uðrÞðvÞ and PðrÞðvÞ denote similar

functions of the one-parameter family of states which can be connected to the right state ðvr; Pr; urÞ. In other

words, let us define the two functions

uðlÞðvÞ �
uRH
ðlÞ ðvÞ if v < vl

urwðlÞðvÞ if v > vl

(
and uðrÞðvÞ �

uRH
ðrÞ ðvÞ if v < vr

urwðrÞðvÞ if v > vr

(
ð3:4Þ
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and the two functions

PðlÞðvÞ �
PRH
ðlÞ ðvÞ if v < vl

P rw
ðlÞ ðvÞ if v > vl

(
and PðrÞðvÞ �

PRH
ðrÞ ðvÞ if v < vr;

P rw
ðrÞ ðvÞ if v > vr;

(
ð3:5Þ

where the superscripts rw and RH denote, respectively, the solution of the rarefaction wave and of the

shock wave by Rankine–Hugoniot conditions, see below.
To solve the Riemann problem means to determine the two values v
l and v
r of the specific volume of the

gas on each side of the contact discontinuity as well as the constant values P 
 and u
 existing on either side.

For notational simplicity, let us denote the two unknown densities by v � v
l and w � v
r . The equality of the
values of velocity and of pressure on either side of the contact discontinuity means that v and w are solution

to the system of two equations

uðlÞðvÞ ¼ uðrÞðwÞ;
PðlÞðvÞ ¼ PðrÞðwÞ;

�
that is

/ðv;wÞ ¼ 0;
wðv;wÞ ¼ 0;

�
ð3:6Þ

with the obvious definitions

/ðv;wÞ � uðlÞðvÞ � uðrÞðwÞ;
wðv;wÞ � PðlÞðvÞ � PðrÞðwÞ: ð3:7Þ

Thus, the application of Newton iterative method for solving this system requires to evaluate the Jacobian
matrix

Jðv;wÞ �
duðlÞðvÞ

dv � duðrÞðwÞ
dw

dPðlÞðvÞ
dv � dPðrÞðwÞ

dw

 !
: ð3:8Þ

The final element of the solution of the Riemann problem is provided by the values u
 ¼ uðlÞðvÞ ¼ uðrÞðwÞ and
P 
 ¼ PðlÞðvÞ ¼ PðrÞðwÞ. Note that the use of the specific volumes as unknown variables stems from the adopted

representation of the gasdynamic equations. Of course, different unknowns can be chosen to formulate the

two-equation system of the Riemann problem. Anyhow, for the polytropic van der Waals gas the specific

volume is found to be very convenient to obtain simple expressions, while for the nonpolytropic case the

temperature will be revealed to be a more convenient choice. In this work the problem of finding the optimal
parameterization that assures the highest computational efficiency of the solution algorithm is not addressed.

The existence and uniqueness of the solution of the Riemann problem of gasdynamics under appropriate

conditions have been established by Liu [24] and by Smith [14]. In particular, the ‘‘strong’’ condition

oeðP ; vÞ=ov > 0, which is sufficient for existence and uniqueness of the solution for arbitrary initial data [14],

is satisfied by the polytropic van der Waals gas, thanks to the form of the equation of state (A.1.8). Thus,

the Newton iteration will converge to the correct solution of (3.6) provided the initial guess is chosen

properly, a task which could be more difficult for strong waves.

3.2. Rarefaction waves

A rarefaction waves is a one-parameter family of states connecting a given state ðvi; ui; siÞ of the fluid and

satisfying the differential Euler equations (2.1) or (2.3). This kind of continuous solutions is obtained by
determining the so-called integral curves of each genuinely nonlinear mode of the system, that is the curves

tangent in any point to the vector field of the associated eigenvector. Considering simultaneously the

rarefactions associated with the first or the third eigenvalue, denoted by k1j3ðwÞ, the corresponding integral

curves w ¼ wðnÞ are obtained by solving the ODE system
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dw

dn
¼ r1j3ðwÞ

r1j3ðwÞ � $k1j3ðwÞ
; ð3:9Þ

under the condition k1j3ðwðnÞÞ ¼ n and subject to the initial condition wðniÞ ¼ wi ¼ ðvi; ui; siÞ, with

ni ¼ k1j3ðwiÞ.
For the hyperbolic system of the Euler equations this system becomes

dv
dn ¼ v

cðs; vÞ � v ocðs; vÞ
ov

;

du
dn ¼ �cðs; vÞ

cðs; vÞ � v ocðs; vÞ
ov

;

ds
dn ¼ 0:

8>>>>>>><
>>>>>>>:

ð3:10Þ

The last equation has the immediate solution s ¼ constant ¼ si, so that we have to solve the system of

two equations

dv
dn ¼ v

cðsi; vÞ � v ocðsi; vÞ
ov

;

du
dn ¼ �cðsi; vÞ

cðsi; vÞ � v ocðsi; vÞ
ov

8>>>><
>>>>:

ð3:11Þ

with the initial conditions vðniÞ ¼ vi and uðniÞ ¼ ui. The first equation for v is uncoupled from the second, is

separable and is solved by a simple quadrature

n ¼ nðvÞ ¼ ui � cðsi; viÞ þ
Z v

vi

cðsi; v0Þ
v0

�
� ocðsi; v0Þ

ov

�
dv0: ð3:12Þ

The solution v ¼ vðnÞ so obtained can be substituted into the second equation of (3.11), yielding another

separable equation for u, again solvable by simple quadrature

u ¼ uðnÞ ¼ ui �
Z n

ni

1

"
� vðn0Þ
cðsi; vðn0ÞÞ

ocðsi; vðn0ÞÞ
ov

#�1

dn0: ð3:13Þ

One can now eliminate the variable n by the change of variables n ! vðnÞ, and the solution for the velocity

can be written as

u ¼ uðvÞ ¼ ui �
Z v

vi

cðsi; v0Þ
v0

dv0: ð3:14Þ

Using the expression of the speed of sound (A.1.9) with s ¼ si, the solution for the rarefaction wave issuing

from the initial or input state ðiÞ � ðvi; ui; PiÞ for the polytropic van der Waals gas is found to be given by

urwðiÞðvÞ ¼ ui �
Z v

vi

ðd
"

þ 1Þ Pi

�
þ a
v2i

�
ðvi � bÞdþ1

ðv0 � bÞdþ2
� 2a

v03

#1=2
dv0 ð3:15Þ

whenever 2 v > vi. By the equation of state (A.1.6), the pressure along the (isentropic) rarefaction wave is

given by
2 In the particular case of the polytropic ideal gas, the integral of (3.15) can be evaluated analytically and gives

urwðiÞ ðvÞ ¼ ui �
2

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ 1ÞPivi

p vi
v

� �d=2
�

� 1

�
:
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P rw
ðiÞ ðvÞ ¼ Pi

�
þ a
v2i

�
vi � b
v� b

� �dþ1

� a
v2
: ð3:16Þ

The possibility of tackling a Riemann problem when the rarefaction wave requires a numerical integration

was suggested by the work of Pons et al. [25] on the relativistic Riemann problem with non-zero tangential

velocities. Note that the elements of the Jacobian (3.8) can be evaluated by means of explicit relations: the
derivative durwðiÞðvÞ=dv is the integrand of (3.15) while the derivative dP rw

ðiÞ ðvÞ=dv from (3.16) is found to be

simply the negative of the square of the previous derivative.

The expression of the rarefaction wave allows to detect the possibility of formation of vacuum in the

solution of the Riemann problem. This situation occurs when the velocities ul and ur are such that the

solution consisting of two rarefaction waves reaches a zero density at the contact dicontinuity, a con-

dition which is expressed by urwðlÞð1Þ ¼ urwðrÞð1Þ. Therefore, by (3.15) the condition for vacuum formation

reads

ur � ul P
Z 1

vl

cðsl; vÞ
v

dvþ
Z 1

vr

cðsr; vÞ
v

dv: ð3:17Þ

If this condition is satisfied, the solution of Riemann problem is characterized by the presence of a gap in

the gas between the two rarefaction waves whose extremes move to the left and to the right with the re-

spective velocity:

uvacl ¼ ul þ
Z 1

vl

cðsl; vÞ
v

dv and uvacr ¼ ur �
Z 1

vr

cðsr; vÞ
v

dv; ð3:18Þ

while the pressure and the temperature of the gas vanish as v ! 1.

3.3. Shock waves

Shock waves are piecewise constant discontinuous solutions, satisfying the entropy condition, that

propagate at a velocity r dependent on the states existing on the two sides of the jump. The conservation

variables must respect the Rankine–Hugoniot jump conditions. By introducing the gas velocity U in the

reference frame of the shock wave, namely, U ¼ u� r, the jump conditions between the two states

ðvi;Ui; eiÞ and ðv;U ; eÞ assume the form, cf. [6, p. 109],

Ui=vi ¼ U=v;
U 2

i =vi þ Pi ¼ U 2=vþ P ;
1
2
U 2

i þ ei
� �

=vi þ Pi
� �

Ui ¼ 1
2
U 2 þ e

� �
=vþ P

� �
U ;

8><
>: ð3:19Þ

under the equation of state e ¼ eðP ; vÞ. By indicating the mass flux through the discontinuity with
M ¼ U=v, the relations in (3.19) can be rearranged as follows

eðP ; vÞ � eðPi; viÞ þ 1
2
ðPi þ P Þðv� viÞ ¼ 0;

M ¼ u�ui
v�vi

;

M2 ¼ � P�Pi
v�vi

:

8><
>: ð3:20Þ

The first relation is purely thermodynamical and is called Hugoniot equation. It defines the value of pressure

P as a function of v for a given specific volume–pressure pair ðvi; PiÞ. The solution to the system (3.20)

represents a one-parameter family of states satisfying the Rankine–Hugoniot jump relations and depends

on the form of the equation of state e ¼ eðP ; vÞ.
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Considering the polytropic van der Waals gas, the function eðP ; vÞ is easily obtained from the equation of

state (A.1.8), namely, eðP ; vÞ ¼ 1
d ðP þ a

v2Þðv� bÞ � a
v. Using this relation in the first equation of (3.20) gives

the solution of P ðvÞ in explicit form

PRH
ðiÞ ðvÞ ¼

ei � Pi
2
ðv� viÞ þ a 1� 1

d

� �
1
v þ ab

dv2

1
2
þ 1

d

� �
v� vi

2
þ b

d

� � ; ð3:21Þ

where ei � eðPi; viÞ. In classical gasdynamics the entropy decreases monotonically with v along these curves,

see, e.g. [6]. Consequently, the admissible discontinuities will be the compressive shocks for which the

pressure increases and v < vi. Furthermore, we should notice that on the Hugoniot locus just defined, the

pressure can assume any value in the interval ½0;1½, whilst the volume will be limited in a finite interval. In

particular, the pressure will go to infinity when the specific volume reaches the value vmin ¼ vi=2þ b=d.
Once the value of pressure PRH

ðiÞ ðvÞ has been determined by relation (3.21), the other two equations of
(3.20) allow one to express the velocity as

u ¼ ui � signðMÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðP � PiÞðv� viÞ

p
:

This equation is an implicit definition of the post-shock velocity u, since the sign of the mass flux through

the shock M depends on u by virtue of relation M ¼ ðu� uiÞ=ðv� viÞ. The sign ambiguity can be solved by

resorting to the knowledge of the wave the considered shock is associated with. Remembering that in

classical gasdynamics an admissible shock is a compressive one, it can be shown that M > 0 for 1-wave and

M < 0 for 3-wave. The value of the post-shock velocity is therefore

uRH
ðiÞ ðvÞ ¼ ui �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� PRH

ðiÞ ðvÞ � Pi
h i

ðv� viÞ
r

; ð3:22Þ

where the two signs refer to the first and the third wave, respectively.

3.4. Numerical examples

The proposed Riemann solver has been implemented using an adaptive numerical quadrature to deter-

mine the velocity of the rarefaction wave with a relative accuracy <10�9 and writing the Newton iterative

method in incremental form, with a stop criterion when the sum of the relative errors of the two unknowns is

<10�7. The initial guess for v andw is taken to be the values vl and vr of the specific volume in the left and right

states of the Riemann problem. In the particular case of the polytropic ideal gas this simple guess for the
Newton method for the system has been verified to require only one iteration more than the optimal initial

guess of Gottlieb and Groth [5] in solving the single nonlinear equation. However, the success obtained in all

problems we have solved by no means guarantees that this initial guess leads to convergence in any case.

Three Riemann problems for the van der Waals gas have been solved with d ¼ 0:329, thus excluding the

occurrence of anomalous behavior. The corresponding initial data are collected in Table 1, in dimensionless

form according to the definitions q ¼ ~qq=qcr, v ¼ ~vv=vcr, P ¼ ~PP=Pcr and u ¼ ~uu=
ffiffiffiffiffiffiffiffiffiffiffi
Pcrvcr

p
, where the tilde denotes

dimensional quantities. Consistently, we assume a ¼ 3 and b ¼ 1=3. The solutions to these three problems

consist, respectively, in two shock waves, a left rarefaction with a right shock, and two rarefaction waves, in
addition to the contact discontinuity.

In Table 2, we report the values q

l , u


, P 
 and q

r , which represent the two intermediate states before and

after the contact discontinuity, calculated by the proposed algorithm. The number of iterations is 4 or 5 to

obtain these solutions with a relative accuracy <10�7 (i.e., seven exact figures). The initial data and the

solution in the plane v–P for the three Riemann problems above are represented in Fig. 3. The computed

values q

l , u


, P 
 and q

r before and after the contact discontinuity are reported in Table 2.



Table 2

Solution of the Riemann problems for polytropic van der Waals

q

l u
 P 
 q


r

RP-1 Present 0.63527 0.077503 1.91913 1.12721

RP-1 Ref. [21] 0.635254 0.077519 1.91903 1.12719

RP-2 Present 0.433416 0.22551 0.83405 0.135228

RP-2 Ref. [21] 0.433461 0.22555 0.83416 0.13524

RP-3 Present 0.189734 )0.207406 0.41809 0.247204

RP-3 Ref. [21] 0.189736 )0.207405 0.418096 0.247207

Table 1

Definition of the Riemann problems used in the tests for polytropic van der Waals gas

ql ul Pl qr ur Pr

RP-1 (s-s) 0.4 1 1 0.8 )0.5 1

RP-2 (r-s) 0.5 0 1 0.125 0 0.75

RP-3 (r-r) 0.3 )1 0.75 0.4 0.5 0.75
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For comparison we report the solutions to the same three Riemann problems calculated by integrating the

Euler equations by means of the approximate Riemann solver for nonideal gases described in [21]. The

values occurring in the computed solution using a uniform grid of 2000 points are reported on the same
Table 2. In the numerical solution there is a slight jump in velocity across the contact discontinuity and in

the table the arithmetic average of the two values is reported. For instance, in problem RP-2 the numerical

technique provides u
l ¼ 0:225346 and u
r ¼ 0:225786, and similarly for the other two Riemann problems.

The comparison of the results calculated by the proposed Riemann solver with those provided by numerical

integration of the conservation laws indicates that the new algorithm is correct.
Fig. 3. Initial thermodynamic data and solutions of the Riemann problems of Table 2.
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4. Riemann problem for nonpolytropic van der Waals gas

In this section we extend the analysis of the Riemann problem for the van der Waals gas to include the

possibility of a nonconstant specific heat. More precisely, we elaborate upon the formulation of the Rie-

mann problem for the particular case of the nonpolytropic van der Waals gas which includes the contri-

bution to the internal energy of the molecular vibrations, according to the thermodynamic definition

presented in Section A.2 of the appendix. In this case, due to the dependence on T of the specific heat cv, the
speed of sound c ¼ cðT ; vÞ is expressed by explicit relation (A.2.6), instead of function c ¼ cðP ; vÞ available
only in the polytropic case. As a consequence in the solution of the rarefaction wave it is convenient to

parametrize the integral curve by the temperature. We notice in passing that the parametrization by T was

already employed by Beccantini [26] to derive an approximate two-shock Riemann solver for the non-

polytropic ideal gas.

According to the previous remark, the entire Riemann problem defined by left and right states ðvl; Tl; ulÞ
and ðvr; Tr; urÞ is formulated by taking as unknowns values T 


l and T 

r of the temperature on the two sides of

the contact discontinuity; to simplify the notation, the two unknowns will be indicated by T ¼ T 

l and

W ¼ T 

r .

4.1. Equation system for the Riemann problem

The solution of the Riemann problem for the nonpolytropic van der Waals gas mimics that for the
polytropic case considered in Section 3.1. We introduces the functions uðlÞðT Þ and PðlÞðT Þ which give, re-

spectively, the velocity and pressure of the one-parameter family of states which can be connected to the left

state ðvl; Tl; ulÞ of the Riemann problem, by either a rarefaction wave or a shock wave, depending on the

value of T with respect to Tl. Similarly, let uðrÞðT Þ and PðrÞðT Þ denote the functions of the one-parameter

family of states which can be connected to the right state ðvr; Tr; urÞ. These two pairs of functions are defined

by

uðlÞðT Þ �
uRH
ðlÞ ðT Þ if T > Tl

urwðlÞðT Þ if T < Tl

(
and uðrÞðT Þ �

uRH
ðrÞ ðT Þ if T > Tr

urwðrÞðT Þ if T < Tr

(
ð4:1Þ

and

PðlÞðT Þ �
PRH
ðlÞ ðT Þ if T > Tl

P rw
ðlÞ ðT Þ if T < Tl

(
and PðrÞðT Þ �

PRH
ðrÞ ðT Þ if T > Tr;

P rw
ðrÞ ðT Þ if T < Tr:

(
ð4:2Þ

The equality of the values of velocity and of pressure on the two sides of the contact discontinuity means

that T and W are the solution to the system of two equations

uðlÞðT Þ ¼ uðrÞðW Þ;
PðlÞðT Þ ¼ PðrÞðW Þ:

�
ð4:3Þ

The solution of this nonlinear system can be tackled by the same Newton method in incremental form

described for the polytropic case in Section 3.1. The calculation of the present Jacobian matrix

JðT ;W Þ �
duðlÞðT Þ

dT � duðrÞðW Þ
dW

dPðlÞðT Þ
dT � dPðrÞðW Þ

dW

 !
ð4:4Þ

is however slightly more complicated. In fact, the evaluation of the derivatives with respect to temperature

T and W requires the chain rule because function PðiÞðT Þ is a composed function, PðiÞðT Þ ¼ P ðT ; vðiÞðT ÞÞ, with
vðiÞðT Þ representing the appropriate rarefaction or shock wave solution.
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Concerning the existence and uniqueness of the solution to system (4.3) for the nonpolytropic gas, the

sufficient condition oeðP ; vÞ=ov > 0 for arbitrary initial data [14] is always satisfied, as can be shown from

eðP ; vÞ ¼ eðT ðP ; vÞ; vÞ using the equation of states e ¼ eðT ; vÞ given by (A.2.2) and T ¼ T ðP ; vÞ.
Let us now study the rarefaction waves and the shock waves for this more general gas model, whose

analytical expressions are necessary to solve the corresponding Riemann problem.

4.2. Rarefaction waves

The determination of the rarefaction wave for the nonpolytropic gas is made by evaluating the integral in

(3.14) through the change of variable v ! T along the integral curve and by exploiting the constancy of the

entropy in the rarefaction wave. Letting s ¼ constant ¼ si in relation (A.2.4) for the entropy, and then

expressing si in terms of the values ðTi; viÞ, the specific volume v of the one-parameter family of states of the
rarefaction wave connected to the initial state ðvi; ui; TiÞ is given by the relation

ln
v� b
vi � b

¼ ln
Ti
T

� �1=d

þ
XMvib

m¼1

ln
1� e�Tm=T

1� e�Tm=Ti

�
þ Tm=T
1� eTm=T

� Tm=Ti
1� eTm=Ti

"
: ð4:5Þ

This relation can be solved with respect to v and gives the following explicit function for vrwðiÞðT Þ:

vrwðiÞðT Þ ¼ bþ ðvi � bÞ Ti
T

� �1=dYMvib

m¼1

exp Tm=T
1�eTm=T

� �
� exp �Tm=T

1�e�Tm=T

� �
exp Tm=Ti

1�eTm=Ti

� �
� exp �Tm=Ti

1�e�Tm=Ti

� � : ð4:6Þ

This function is used in the integral of (3.14) with the speed of sound given by relation (A.2.6) expressed as a

function only of T , namely, cðT ; vrwðiÞðT ÞÞ, to give for any T < Ti

urwðiÞðT Þ ¼ ui �
Z T

Ti

cðt; vrwðiÞðtÞÞ
vrwðiÞðtÞ

dvrwðiÞðtÞ
dt

dt; ð4:7Þ

where cðT ; vÞ is given by (A.2.6). The derivative under the integral is evaluated directly from (4.6) by

differentiating the exponential functions and simplifying, to give

dvrwðiÞðT Þ
dT

¼ vrwðiÞðT Þ
h

� b
i8<
:� 1

dT
þ
XMvib

m¼1

d
dT

Tm=T
1�eTm=T

� �
þ e�Tm=T d

dT
Tm=T

1�e�Tm=T

� �
1� e�Tm=T

9=
;: ð4:8Þ

The pressure of the rarefaction family is similarly determined as a function of the T through the function
vrwðiÞðT Þ by means of the equation of state for the pressure, namely, P rw

ðiÞ ðT Þ ¼ P ðT ; vrwðiÞðT ÞÞ, always with

T < Ti.

4.3. Shock waves

To find the solution of the Rankine–Hugoniot jump conditions in the nonpolytropic case, the Hugoniot

equation [i.e., the first equation of (3.20)] cannot be used directly in this form since the equation of state

e ¼ eðP ; vÞ is not available. Instead, relation (A.2.2) gives the function eðT ; vÞ, so that the Hugoniot

equation can be rewritten as follows

eðT ; vÞ � eðTi; viÞ þ
1 ½PðTi; viÞ þ P ðT ; vÞ
ðv� viÞ ¼ 0: ð4:9Þ

2
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By using the equation of state P ðT ; vÞ ¼ RT
v�b � a

v2 in this relation, we obtain

RT
d

þ
XMvib

m¼1

RTm
eTm=T � 1

þ 1

2

RT
v� b

�
� a
v2

�
ðv� viÞ þ

1

2

RTi
vi � b

�
� a
v2i

�
ðv� viÞ �

a
v
� ei ¼ 0; ð4:10Þ

where ei ¼ eðTi; viÞ. This equation is of the form f RH
ðiÞ ðT ; vÞ ¼ 0 and represents an implicit definition of the

function v ¼ vRH
ðiÞ ðT Þ, for T > Ti. For any T > Ti the solution v can be determined by Newton iteration,

using as initial guess the solution v0 of Eq. (4.10) in the particular case a ¼ b ¼ 0, namely,

1

2

T
v0

�
þ Ti

vi

�
ðv0 � viÞ þ

T � Ti
d

þ
XMvib

m¼1

Tm
eTm=T � 1

�
� Tm
eTm=Ti � 1

�
¼ 0:

This is a second-order equation for the dimensionless unknown m � v0=vi as follows:

m2 þ 2bðsÞm � s ¼ 0;

where s � T=Ti and

bðsÞ � 1

2

�
þ 1

d

�
ðs � 1Þ þ

XMvib

m¼1

Tm
Ti

1

eðTm=TiÞ=s � 1

�
� 1

eTm=Ti � 1

�
:

Thus, the value of v0 is chosen to be the physically admissible solution of this equation, namely,

v0 ¼ vi

�
� bðsÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ2 þ s

q �
:

During Newton iteration the tentative value of v is checked to ensure that it does not become less than the

covolume b; in our implementation v is bounded from below by 1:01b.
Once the solution of the nonlinear equation f RH

ðiÞ ðT ; vÞ ¼ 0 has been determined, the post-shock pressure

is immediately given by PRH
ðiÞ ðT Þ ¼ P ðT ; vRH

ðiÞ ðT ÞÞ, and the post-shock velocity is calculated from

uRH
ðiÞ ðT Þ ¼ ui �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� PRH

ðiÞ ðT Þ � Pi
h i

vRH
ðiÞ ðT Þ � vi

h ir
; ð4:11Þ

always under the assumption T > Ti. It must be remembered that the shock solution here considered is

based on the hypothesis that the gas behind the shock front is in a complete thermodynamic equilibrium.

This assumption is to some an extent physically artificial in the presence of molecular vibrations since a

finite relaxation time is needed before the vibrational energy reaches an equilibrium with the translational

and rotational energy of the molecules, as explained in detail by Zel�dovich and Raizer [23, Chapter VII,
Sections 6 and 7], see also Grossman and Cinnella [27]. Anyway, the effect of vibrational non equilibrium is

confined to a relatively narrow layer behind the shock front, see, e.g. [10], so the proposed Riemann solver

for the nonpolytropic gas should be physically significant at least as a first approximation and under this

restriction.

It is worthwhile to note that the solver described so far can accommodate also the contribution to the

internal energy from the rotational degrees of freedom, by simply including the corresponding terms in the

expressions for cvðT Þ and eðT ; vÞ. We have not considered this more general nonpolytropic case only to

avoid an unnecessary complication in the description of the algorithm.
Coming to the evaluation of the derivatives of the elements of the Jacobian matrix (4.4), we have

dPðiÞðT Þ
dT

¼ oPðT ; vÞ
oT

�
þ oP ðT ; vÞ

ov
dvðiÞðT Þ
dT

�((((
v ðT Þ

; ð4:12Þ

ðiÞ
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where P ðT ; vÞ ¼ RT
v�b � a

v2 and where the derivative of vðiÞðT Þ in the case of the rarefaction wave is given by

(4.8), while in the case of the shock wave is given by the implicit function differentiation

dvRH
ðiÞ ðT Þ
dT

¼ �
of RH

ðiÞ ðT ; vÞ
oT

(((((
vRH
ðiÞ ðT Þ

,
of RH

ðiÞ ðT ; vÞ
ov

(((((
vRH
ðiÞ ðT Þ

: ð4:13Þ

In conclusion, it can be remarked that the nonpolytropic character of the gas increases the complexity of

some explicit expressions with respect to its polytropic counterpart. From this viewpoint, we reiterate that

the proposed Riemann solver has been developed without paying attention to the issue of which is the best
parametrization for the computational efficiency.

4.4. Numerical examples

To verify the solution algorithm for the nonpolytropic van der Waals gas we have considered the two

Riemann problems defined by the dimensionless values reported in Table 3.

The nonpolytropic van der Waals gas is assumed to be a diatomic gas so that d ¼ 0:4 and there is only

one oscillatory mode with a vibrational temperature assumed to be Tm¼1 ¼ 3Tcr, where Tcr ¼ 8a
27b. Moreover,

we take a ¼ 3 and b ¼ 1=3; with this choice the variables P and v in all the equations above become di-

mensionless and assume a unit value at the critical point, while the variable T is dimensionless but assumes

the value 8
3
at the critical point. The values of T and W chosen for starting Newton method are the two

temperatures Tl and Tr in the left and right states of the considered Riemann problem.
In Table 4, we report the values q


l , T


l , u


, P 
, T 

r and q


r , in the two intermediate states before and after

the contact discontinuity, obtained by means of the proposed algorithm.

These values are compared with those calculated by integrating Euler equations with the approxi-

mate Riemann solver for nonideal gases [21] using a uniform grid of 2000 points, which are given in

the same Table 4. Since in the numerical solution there is a slight jump in velocity and in pressure

across the contact discontinuity, the corresponding arithmetic average is reported in the table. The

comparison with the results of the proposed Riemann solver indicates that the algorithm for the

nonpolytropic gas is correct.
Table 3

Definition of the Riemann problems used in the tests for nonpolytropic van der Waals gas

ql ul Pl qr ur Pr

RP-4 (s-s) 1 1 1.5 1
0:594

)0.5 0.8957

RP-5 (r-r) 0.3 )1 0.75 0.4 0.5 0.75

Table 4

Solution of the Riemann problems for the nonpolytropic van der Waals

q

l T 


l u
 P 
 T 

r q


r

RP-4 Present 1.239035 3.318938 0.583287 2.400107 3.463791 1.106865

RP-4 Ref. [21] 1.23904 3.31894 0.58329 2.40012 3.46379 1.10687

RP-5 Present 0.188664 2.639612 )0.2089145 0.424642 2.266568 0.245020

RP-5 Ref. [21] 0.188669 2.63963 )0.208915 0.42465 2.266568 0.245020



Table 5

Riemann problems used in the tests for gas CCl4

vl (m3/kg) ul (m/s) Tl (K) vr (m3/kg) ur (m/s) Tr (K)

RP-6 (s-s) 12.� 10�3 200 450 5.0� 10�3 )100 850

RP-7 (r-r) 6.0� 10�3 )600 550 3.0� 10�3 600 750

Table 6

Comparison of results for gas CCl4 with constant and nonconstant specific heat

jDv
l =v
l j (%) jDu
=u
j (%) jDP 
=P 
j (%) jDv
r=v
r j (%)

RP-6 8.4 1.39 0.59 0.41

RP-7 2.1 0.36 11.0 3.6
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4.5. Nonpolytropic effects: carbon tetrachloride CCl4

It is interesting to show the differences in the solution of the Riemann problem caused by a variable

specific heat with respect to the constant polytropic case, a comparison that may be relevant for real gases

applications. For this reason we briefly investigate the issue in connection with a definite gas model rep-

resented by the Carbon tetrachloride. The molecule CCl4 has four different normal modes, characterized by
the vibrational temperatures T1 ¼ 314 �C¼ 587.15K, T2 ¼ 452 �C¼ 725.15K, T3 ¼ 659 �C¼ 932.15K and

T4 ¼ 1120 �C¼ 1393.15K, with a degeneracy of 2, 3, 1 and 3, respectively [28]. The critical values are as

follows: Tcr ¼ 556:3K, Pcr ¼ 4:516� 106 Pa and vcr ¼ 1:79211� 10�3 m3/kg, so that the critical compress-

ibility factor Zcr ¼ Pcrvcr=ðRTcrÞ ¼ 0:26917, since R ¼ RCCl4 ¼ 54:05 J/(kg K).

Notice that, in accordance with the harmonic oscillation model, the value of d for the nonpolytropic

CCl4 accounts only for the translational and rotational energy, i.e., d ¼ 1
3
, whereas for the polytropic

version of the same gas d ¼ 1
12
, including the contribution from the fully excited 9 vibrational modes.

A couple of Riemann problems with the initial temperature jump encompassing the vibrational tem-
peratures of the first two modes have been chosen to illustrate the size of the possible errors associated with

the polytropic assumption. The dimensionless values consistent with the present formulation are related to

their dimensional counterparts by: vadim ¼ 8Zcrv=3vcr, uadim ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Zcr=3Pcrvcr

p
, and T adim ¼ 8T =3Tcr. The

problems are defined in Table 5 and produce shock–shock and rarefaction–rarefaction solutions.

In Table 6 the difference DX ¼ X nonpoly � X poly between values pertaining to solutions to the polytropic

and nonpolytropic models are reported. The maximum size of the relative difference is around 10%. These

results demonstrate that the nonpolytropic approximation for the specific heat is needed to guarantee an

accurate solution when the number of excited vibrational modes is changing between the states of the
Riemann problem.
5. An application to general equations of state: Martin–Hou gas model

As an example of the application of the two-equation Riemann solver to a gas with more complex

equations of state we consider the Martin–Hou gas model. This model was first introduced by Martin and

Hou [13] and improved subsequently by Martin et al. [29], and is defined by the following (compatible)
equations of state for the pressure and the internal energy:

P ðT ; vÞ ¼ RT
v� b

þ
X5
i¼2

QiðT Þ
ðv� bÞi

; ð5:1Þ
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eðT ; vÞ ¼ e0 þ
Z T

T0

cvðT 0;1ÞdT 0 �
X5
i¼2

TQ0
iðT Þ � QiðT Þ

ði� 1Þðv� bÞi�1
; ð5:2Þ

where the functions QiðT Þ are given by

QiðT Þ ¼ Ai þ BiT þ Ci expð�kT =TcrÞ; k ¼ 5:475: ð5:3Þ

The gas-dependent coefficients b, Ai, Bi, and Ci are obtained by applying the procedure given in [13] and

their evaluation requires the knowledge of the critical point coordinates and of one state point along the

vapor pressure curve. In [30] an approximate procedure to compute the Martin–Hou coefficients, which

requires the specification of the critical point coordinates and the boiling temperature at 1 atm, is presented.
Martin–Hou model, thanks to its 11 parameters, allows for a better representation of the thermodynamic

behavior of real gases than van der Waals model, especially in the description of the isotherms. Martin–

Hou equations of state are complicate enough to constitute a proper test for the general applicability of the

proposed Riemann solver. We have considered the polytropic version of Martin–Hou model, for whichR T
T0
cvðT 0;1ÞdT 0 ¼ cvðT � T0Þ as applied to hydrogen sulfide gas H2S, whose Martin–Hou approximation is

defined by the values reported in Table 7.

For the tests we have chosen the three Riemann problems given in dimensionless form in Table 8, which

roughly represent a Martin–Hou counterpart of the initial data in Table 1 for the van der Waals gas.
Table 7

Coefficients for Martin–Hou model of hydrogen sulfide gas H2S, with cv=R ¼ 3:125, R ¼ 243:955 J/(kg K), b ¼ 0:679059� 10�3 m3/kg,

Pcr ¼ 8:93990� 106 Pa, Tcr ¼ 373:2K and vcr ¼ 2:89226� 10�3 m3/kg

i Ai (Pa (kg/m3)i) Bi ((Pa/K) (kg/m3)i) Ci (Pa (kg/m3)i)

2 )493.624 0.412243 )7591.87
3 0.930361 )0.660362� 10�3 18.3012

4 )0.781845� 10�3 0 0

5 0 0.948924� 10�9 )7.34187� 10�6

Table 8

Dimensionless initial conditions of the Riemann problems for Martin–Hou model of H2S

vl ul Pl vr ur Pr

RP-8 (s-s) 5 1 1 1.5 )0.5 1

RP-9 (s-r) 8 0 0.75 2 0 1

RP-10 (r-r) 2.5 )0.5 1.1 5/3 0 1.1

Table 9

Solution of the Riemann problems for Martin–Hou model of H2S

v
l u
 P 
 v
r

RP-8 Present 3.5106 3.6529� 10�3 1.6665 1.11194

RP-8 Ref. [21] 3.5107 3.663� 10�3 1.6664 1.11195

RP-9 Present 7.41829 )0.218675 0.832205 2.28579

RP-9 Ref. [21] 7.4184 )0.21868 0.83220 2.2858

RP-10 Present 2.89182 )0.220935 0.900629 1.912350

RP-10 Ref. [21] 2.8918 )0.22092 0.90062 1.91237
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In Table 9 the solutions provided by the exact Riemann solver are compared with results obtained by means

of the numerical integration of Euler equations. The agreement is completely satisfactory.
6. Conclusion

This work has described a new approach to determine the exact solution to Riemann problems for gases

satisfying the condition evvvðs; vÞ 6¼ 0. In the proposed method, the two intermediate states are found by
solving the system of two nonlinear equations which impose the equality of pressure and of velocity on the

two sides of the contact discontinuity, the two values of another thermodynamic variable playing the rôole of

unknowns. This procedure exploits the very nature of the characteristic field of the linearly degenerate

eigenvalue of the Euler equations of gasdynamics. The method extends to gases with rather general ther-

modynamic properties the classical procedures for solving Riemann problems for the c-law ideal gas by

means of a single nonlinear equation for a single unknown.

For the particular case of the polytropic van der Waals gas, the unknowns of the system can be chosen to

be the values of the specific volume on the two sides of the contact surface, while for the nonpolytropic case,
with the effect of molecular vibrations at thermal equilibrium included, the value of the two temperatures

represents the natural choice. In the latter situation, the Euler equations, and consequently the proposed

analysis, are valid only under the assumption that all the thermodynamic degrees of freedom relax to the

equilibrium instantaneously, which is often admittedly not the case for the vibrational degrees of freedom

behind shock waves. The proposed approach is suitable also for more complex equations of state, provided

the states remain inside the region of classical behavior. As an example of the general applicability of the

new two-equation scheme, it has been used to solve three Riemann problems for Martin–Hou model of the

hydrogen sulfide gas.
The results computed with the new method have been compared successfully with the numerical solu-

tions of the shock tube problems calculated by means of the Godunov-type approximate Riemann solver

for nonideal gases developed by Guardone and Vigevano [21]. From a computational viewpoint, no effort

has been made to analyze and improve the efficiency of the new exact solver.

From a theoretical viewpoint, the existence and uniqueness of the solution to the Riemann problem of

gasdynamics for arbitrarily large data is covered by Smith�s analysis [14]; this theory guarantees that the

sufficient condition is satisfied by van der Waals gas, irrespective of its polytropic or nonpolytropic

character. On the other hand, the convergence of Newton method to the solution of the nonlinear system is
guaranteed only if the contractivity of the iteration mapping can be demonstrated, and this requires a gas-

dependent specific analysis.

Considering gases for which a nonclassical behavior is possible, as for instance a van der Waals gas of

sufficiently high molecular weight within the ‘‘anomalous’’ region near the saturation curve, the proposed

two-equation strategy should not face additional difficulties with respect to those of any single equation

method. In this case, the left and right waves of the Riemann problem solution include the possibility of

rarefactive shocks, compressive fans and the formation also of hybrid and composite waves. Following the

comprehensive study of M€uuller and Voss [31], and the analysis about the conditions for producing single-
phase rarefaction shock wave in a shock tube experiment developed by Fergason et al. [32], the modifications

necessary to extend the proposed approach to include Riemann problems involving the nonclassical region

may be envisaged.
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Appendix A. Thermodynamics of van der Waals gas

In this section, we introduce the thermodynamic properties of the van der Waals gas. This physical

model was proposed by Johannes Diderik van der Waals in his doctoral dissertation [33] of 1873 investi-

gating the behaviour of a fluid when both the liquid and the gas phases are present. At the microscopic level

the system considered in this study consisted in colliding atoms or molecules which are interacting in pair

through weak attractive forces at a large distance and strong repulsive forces at a short distance.

We will consider two physical models compatible with the equation of state for the pressure originally
introduced by van der Waals. These models differs in the form of the second equation of state for the energy

which is necessary to make the description of the thermodynamic properties of the fluid mathematically

complete. More precisely, we first consider the polytropic van der Waals gas, which is characterized by a

constant specific heat (at fixed volume) and then we generalize this physical model to a nonpolytropic van

der Waals gas, in which the gradual contribution of the energy of the molecular oscillations to the internal

energy of the gas is included according to the quantum mechanical statistical treatment.

A.1. Polytropic van der Waals gas

Instead of providing the aforesaid two equations of state defining the polytropic van der Waals gas, we

prefer to state the fundamental thermodynamic relation embodying all its thermodynamic properties in a

single mathematical expression. This choice follows the principles of thermodynamics, as described, for
instance, by Callen [34]. The fundamental relation gives the extensive variable energy or entropy of a

thermodynamic system as a function of only the other extensive variables defining the equilibrium states of

the system. More precisely, for a single component fluid the fundamental relation can be written as the

specific energy e or specific entropy s as a function of the pair of variables s–v or e–v, respectively, where v
denotes the specific volume and the attribute ‘‘specific’’ means, as usual, per unit mass.

For the sake of completeness, we give here both fundamental relations, which are the inverse of each other,

and provide two alternative and but completely equivalent description of the same thermodynamic system.

The polytropic van der Waals gas is defined by either of the two fundamental thermodynamic relations:

s ¼ sðe; vÞ ¼ R ln
eþ a

v

e0 þ a
v0

 !1=d
v� b
v0 � b

2
4

3
5þ s0; ðA:1:1Þ
e ¼ eðs; vÞ ¼ � a
v
þ e0

�
þ a
v0

�
v0 � b
v� b

� �d

exp½dðs� s0Þ=R
; ðA:1:2Þ

where R ¼ R=W is the constant associated with the considered gas of molecular weight W , with

R ¼ 8:314 J/(mol K) denoting the universal gas constant. In the expressions above, a and b are the di-

mensional constants of the van der Waals gas while the dimensionless parameter d ¼ R=cv, with cv being the
specific heat at constant volume. The other quantities e0, v0 and s0 appearing in relations (A.1.1) and (A.1.2)

are the values of specific energy, volume and entropy in a reference state of the gas.
By introducing the constant K0 ¼ ðe0 þ a

v0
Þðv0 � bÞd expð�ds0=RÞ, the fundamental relations above as-

sume a simpler form:

sðe; vÞ ¼ R ln K�1=d
0 e

��
þ a

v

�1=d
ðv� bÞ

�
; ðA:1:3Þ
eðs; vÞ ¼ K0

expðds=RÞ
ðv� bÞd

� a
v
: ðA:1:4Þ
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The equations of state of the polytropic van der Waals gas are easily obtained from relation (A.1.4)

T ¼ esðs; vÞ ¼
K0d
R

expðds=RÞ
ðv� bÞd

; ðA:1:5Þ
P ¼ �evðs; vÞ ¼ K0d
expðds=RÞ
ðv� bÞdþ1

� a
v2
: ðA:1:6Þ

The elimination of variable s in favor of e using relation (A.1.4) gives an alternative expression of the

equations of state:

T ¼ d
R

e
�

þ a
v

�
; ðA:1:7Þ
P ¼ d
eþ a

v

v� b
� a
v2
: ðA:1:8Þ

For solving the Riemann problem, the expression of the speed of sound for the polytropic van der Waals

gas is required. A direct calculation gives

cðs; vÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2

oPðs; vÞ
ov

r
¼ K0dðd
"

þ 1Þ expðds=RÞv
2

ðv� bÞdþ2
� 2a

v

#1=2
: ðA:1:9Þ

By eliminating the variable s in favor of P with the aid of the equation of state (A.1.6), we obtain

cðP ; vÞ ¼ ðd
�

þ 1Þ Pv
2 þ a

v� b
� 2a

v

�1=2
: ðA:1:10Þ

A.2. Nonpolytropic van der Waals gas

A polytropic gas is such that its specific heat at constant volume is constant. This condition is satisfied by
mono atomic gases, whose particles contribute individually to the internal energy only by means of the

kinetic energy associated with their translational motion. For molecular gases, the internal energy of the gas

receives further contributions from the individual energy of each particle: these contributions are associated

with the rotation and the vibrations of the molecule, as well as with the excitation of the electrons of the

outer orbitals. This last contribution, present also in atomic gases but meaningful only at very high tem-

peratures, will not be considered in the model of nonpolytropic van der Waals gas. Moreover, the model

does not appeal to the coupling effect between rotational and vibrational degrees of freedom, neither to the

anharmonicity effect of vibrations, see, e.g. [23, p. 183]. Similarly, excluded from the model of the gas is the
possibility of molecular dissociation.

The inclusion of the effect of the rotational energy of the molecules in the physical model of the gas is

made difficult due to the basically quantum mechanical character of the rotation of the molecules. In

principle, due to the discrete character of the quantum mechanical states of allowed rotations, at a suffi-

ciently low temperature the rotations are forbidden (frozen) and the rotational degrees of freedom are as if

completely absent. The value of temperature for which the molecular rotations become accessible and

therefore can contribute to the internal energy of the gas is typically around 100K, depending on the

particular molecule. Thus, for the range of temperatures of interested here, i.e., for T > 300 K, we can
assume that the molecular rotations are active well beyond their quantum threshold and contribute to the

energy in a purely classical fashion. In this range of temperatures it is necessary to distinguish two different
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possibilities of rotation, according to whether the molecule of the gas is linear or nonlinear. In the first case

only rotations around two axis are to be considered, while in the second case rotations around the three

spatial directions are involved. Correspondingly, by virtue of the equipartition principle the contribution to

the internal energy of the molecular gas due to rotational kinetic energy will be R for linear molecules and

3R=2 for nonlinear molecules. Once summed up with the contribution due to the translational kinetic

energy, we will have a value of 5R=2 for linear molecules and of 3R for nonlinear molecules. These two

values will correspond to the following values for the parameter d ¼ R=cv: d ¼ 2=5 for linear molecules and

d ¼ 1=3 for nonlinear molecules.
The inclusion of the kinetic energy of rotation according to the classical approximation does not break

the polytropic character of the molecular gas. The model of a nonpolytropic gas considered here for the

purpose of obtaining more a general Riemann problem is based on including the energy contribution as-

sociated with the oscillations (called also vibrations) of the molecules. As well know, any molecule with a

number N:A: of atoms has a number of normal modes equal to Mvib ¼ 3 N:A:� 5, if the molecule is linear,

and to Mvib ¼ 3 N:A:� 6, if the molecule is nonlinear. Each normal mode has a characteristic frequency of

oscillation (some modes may have the same frequency, in which case they are said degenerate) and has both

a kinetic and a potential energy. In compliance with a quantum mechanical treatment of the molecular
vibrations, since the energy levels of the quantum oscillator are discrete, the contribution of molecular

oscillations to the internal energy of the gas follows a gradual switching mechanism similar to that of the

rotations, although at temperatures of the order of 1000K, cf. [23, p. 489] and [28, p. 37]. Since closed

expressions for the energy of the molecular vibrations are available, they can be used to extend the

mathematical model of the van der Waals gas beyond the polytropic regime.

The specific heat at constant volume of the considered physical model of the gas is therefore

cvðT Þ �
oeðT ; vÞ

oT
¼ R

d
þ R

XMvib

m¼1

Tm
T

� �2
expðTm=T Þ

expðTm=T Þ � 1½ 
2
; ðA:2:1Þ

where Tm denotes the so-called vibrational temperature of the mth normal mode of the molecule. This value
is related to the angular frequency xm of oscillation of the normal mode by Tm ¼ �hxm=k, with �h denoting

Planck constant and k Boltzmann constant. In the summation of (A.2.1) one could take into account the

possibility of degenerate vibrational modes with an identical vibrational temperature by summing only on

the different temperatures and introducing the corresponding multiplicity factors, but we content ourselves

with the expression above, for simplicity.

Coming to the fundamental thermodynamic relation for the nonpolytropic van der Waals gas, in con-

trast with the polytropic case this relation cannot be written in closed form. On the other hand, the specific

heat defined by (A.2.1) is a function only of the temperature, and this allows an immediate evaluation of the
two functions e ¼ eðT ; vÞ and s ¼ sðT ; vÞ. The relation for the specific energy of the nonpolytropic van der

Waals gas is given by

eðT ; vÞ ¼ e0 þ
Z T

T0

cvðT 0ÞdT 0 � a
v
¼ e0 �

a
v
þ RT

d
þ
XMvib

m¼1

RTm
expðTm=T Þ � 1

; ðA:2:2Þ

where the contribution dependent on the temperature is simply the integral of the cvðT Þ expression given by

(A.2.1). The specific entropy of the nonpolytropic van der Waals gas is given by

sðT ; vÞ ¼ s0 þ R ln
v� b
v0 � b

þ
Z T

T0

cvðT 0Þ
T 0 dT 0: ðA:2:3Þ

The two equations (A.2.2) and (A.2.3) can be regarded as a parametric representation of the fundamental

relation of the considered gas model.
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Using the expression (A.2.1) for cvðT Þ we have the specific entropy of the nonpolytropic van der Waals in

the form

sðT ; vÞ ¼ s0 þ R ln
v� b
v0 � b

þ R
Z T

T0

1

d

"
þ
XMvib

m¼1

Tm
T 0

� �2
eTm=T

0

ðeTm=T 0 � 1Þ2

#
dT 0

T 0 :

A direct integration, using the indefinite integral
R
ln xdx ¼ x ln x� x, leads to the following explicit

expression

sðT ; vÞ ¼ s0 þ R ln
v� b
v0 � b

þ R ln
T
T0

� �1=d

þ R
XMvib

m¼1

ln
1� e�Tm=T0

1� e�Tm=T

�
þ Tm=T
eTm=T � 1

� Tm=T0
eTm=T0 � 1

"
:

By choosing the value of s0 such that s0 ¼ R
PMvib

m¼1
Tm=T0

eTm=T0�1
, the relation for the specific entropy of the

nonpolytropic van der Waals gas simplifies to

sðT ; vÞ
R

¼ ln
v� b
v0 � b

þ ln
T
T0

� �1=d

þ
XMvib

m¼1

ln
1� e�Tm=T0

1� e�Tm=T

�
þ Tm=T
eTm=T � 1

"
: ðA:2:4Þ

For a more general gas with a specific heat dependent also on volume, namely, cv ¼ cvðT ; vÞ, a parametric

representation of the fundamental relation is still possible and can be obtained by means of the ‘‘unified

approach’’ of [28, p. 143]. This leads to the following defining relations

eðT ; vÞ ¼ e0 þ
Z v

v0

T
oP ðT ; v0Þ

oT

�
� P ðT ; v0Þ

�
dv0 þ

Z T

T0

cvðT 0;1ÞdT 0;
sðT ; vÞ ¼ s0 þ
Z v

v0

oP ðT ; v0Þ
oT

dv0 þ
Z T

T0

cvðT 0;1Þ
T 0 dT 0;

whose evaluation requires to know the single variable function cv ¼ cvðT ;1Þ in addition to the equation of

state P ¼ P ðT ; vÞ.
The speed of sound of a gas can be expressed as a function of the two variables T and v via the function

cvðT ; vÞ and the derivatives of P ¼ P ðT ; vÞ by the following relation

cðT ; vÞ ¼ v
T

cvðT ; vÞ
oP ðT ; vÞ

oT

� �2
"

� oP ðT ; vÞ
ov

#1=2
; ðA:2:5Þ

which can be obtained by a straightforward calculation.

Considering the equation of state P ðT ; vÞ ¼ RT
v�b � a

v2 and specific heat relation (A.2.1), a direct calculation

gives immediately the speed of sound of the nonpolytropic van der Waals gas

cðT ; vÞ ¼ 1

�(
þ R
cvðT Þ

�
RTv2

ðv� bÞ2
� 2a

v

)1=2

: ðA:2:6Þ
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